Expo Protection 2024

Publié le 22 Août 2024

Pour la 12 ème année consécutive, RX Expo nous fait l’honneur de nous commander des mini formations à l’occasion d’Expo Protection 2024. Une conférence chaque jour sur 3 thèmes, le planning n’est pas encore fixé à ce jour :

Comment  concevoir un système de vidéo protection / surveillance efficace ?

  • Points d’attention critiques dans un projet Vidéo coté exploitant
  • Comprendre les étapes clés d’un projet Vidéo et la législation
  • Définir ses besoins réels et une stratégie de déploiement

Panorama des tendances technologiques 2024-2025 en Vidéo 

  • Comprendre les grandes tendances technologiques sur le marché de la Vidéo en 2024/2025 coté caméras, serveurs, réseaux, cyber et analytiques
  • Opportunités et /ou limites de ces nouveautés
  • Points d’attention lors des déploiements de ces technologies

Comment intégrer de l’intelligence de façon performante dans un projet de Vidéo protection ?

  • Définition des besoins, Analyse fonctionnelle et types d’exploitation
  • Quelles sont les offres analytiques actuelles ? Détections et Actions possibles
  • Points d’attention lors des déploiements de ces technologies

Retrouvons nous à cette occasion

IA ou DeepLearning ?

Publié le 18 Sep 2021

Just Do IP teste actuellement plusieurs solutions basées sur l’IA ou le Deep Learning soit avec des algorithmes embarqués dans des caméras, soit sous forme de serveurs dédiés.

Vous avez ci dessous les principales problématiques résumées. Parmi les principales: peut on détecter automatiquement des personnes ou véhicules immobiles, et peut on détecter quand on a qu’une fraction masquée de la cible ?

D’autres critères comme la facilité de mise en œuvre et d’auto calibration, l’ergonomie de l’interface utilisateur, son intégration avec les VMS et Hyperviseurs du marché, la résistance / résilience à la saleté, aux insectes et aux végétaux et enfin la facilité de maintenance logicielle du système, car il faut pouvoir évoluer aisément.

Ci dessous test en live avec double détection en mouvement. Sans mouvement ou sur une vue partielle l’algorithme dans la version testée ne détectait pas.

Les véhicules à gauche et devant en partiel ne sont pas détectés. Une main, un avant bras ou une tête seule non plus.

Au stade actuel, aucun éditeur ou constructeur ne se risque à déclarer un 95% ou, à fortiori un 100%.

Peu de sociétés ont le temps et l’argent de tester en conditions de « stress test » les équipements, c’est à dire en faible luminosité ou en noir et blanc avec infra rouge, sous la pluie, et avec une toile d’araignée sur l’objectif.

Néanmoins, je constate que les faux positifs basiques sur végétaux en mouvement (branches, feuillus) ont tendance à disparaitre sur les derniers modèles d’analytiques.

Certaines caméras récentes équipées de Led blanches éclairent la scène dès que la luminosité baisse afin d’appliquer de la reconnaissance humaine ou véhicule et avec de très bons résultats. Elles peuvent émettre des messages pré enregistrés (« Périmètre privé veuillez quitter les lieux.. » ) , des lumières stroboscopiques ou clignotantes… Rester en couleur permet généralement de meilleurs résultats.

Un point important est qu’il est impossible de connaitre généralement la qualité d’apprentissage du « Deep learning » qui a été effectuée part l’éditeur ou le constructeur : a t on alimenté l’algorithme avec d’innombrables situations de l’objet et beaucoup de variations de luminosités pour décrire un véhicule ou un visage ou une arme , ou bien a t on entré des images de type « catalogues » , belles et hyper reconnaissables mais éloignées de la réalité ?

VMD, VCA, Machine Learning, Deep Learning et IA sont abordés et illustrés par des exemples dans nos formations avec leurs forces et leurs limites